Cyanide Poisoning

Daniel Shodell MD, MPH
Learning objectives

• Describe the clinical syndrome, treatment, and epidemiology of cyanide

• Identify the key public health agency response in a cyanide chemical terrorism event
Overview / Background

• Cyanide:
 – recognized since antiquity
 – present in bitter almonds, cassava, and other foods
 – used extensively in industry for fumigation, electroplating, and mining activities
Overview / Background

• Several forms exist; all may have an odor of bitter almonds, but this is not always detectable
 – Gas: colorless, dissipates rapidly
 • hydrogen cyanide [HCN] and cyanogen chloride [CNCl, also known as CK]
 – Liquid: ranges from blue to colorless, stable
 • hydrocyanic acid; an aqueous solution of HCN
 – Solid: white granular powder, stable
 • sodium, potassium, or calcium
Overview / Background

• Tylenol tampering in 1982
 – 7 deaths
 – subsequent events involved other over the counter medications and prepared foods

• Easily available
 – cheap
 – plentiful supplies in industry
 – large scale contamination (eg. municipal water supplies) unlikely due to enormous quantity required to achieve toxic levels in a large body of water.
 – single or multiple local events are more likely
Overview / Background

• Current threat is both domestic and international
 – 2003 search of a Texas property revealed cyanide salts that were possibly intended for use in domestic militia activities (1)
 – international terrorist groups have also been found to possess stores of cyanide (2, 3)

Sources
(1) ATF www.atf.gov/press/fy04press/field/051104dal_chemweapons.htm
(3) CBWInfo www.cbwinfo.com/Chemical/Blood/AC.shtml
Epidemiology

• Acute v. Chronic poisoning
 – Varying clinical presentation
 – This presentation will focus on acute intoxication, consistent with a terrorist event or industrial accident
Epidemiology - Routes of exposure

• Gas: Inhalation
 – hydrogen cyanide
 – cyanogen chloride
• Liquid: Inhalation (aerosol), ingestion, skin contact
 – hydrocyanic acid
• Solid: Inhalation, ingestion, skin contact
 – cyanide salts
Clinical manifestations

- Mechanism:
 - inhibits mitochondrial cytochrome oxidase
 - an “asphyxiating” agent
- Primarily targets CNS and cardiac tissue, but multiple systems involved
- Presentation depends on dose and route of exposure
Clinical manifestations

• Common final pathway for cyanide intoxication is cellular hypoxia. Exposure to any form of cyanide:
 – Metabolic acidosis: nonspecific symptoms
 – CNS: dizziness, nausea, vomiting, drowsiness, tetany, trismus, hallucinations
 – CV: arrhythmia, hypotension. Tachycardia and hypertension may occur transiently in early stages
 – Respiratory: dyspnea, initial hyperventilation followed by hypoventilation and pulmonary edema. Cyanosis not apparent, since blood is adequately oxygenated
Clinical manifestations

- Time to onset of symptoms, as well as additional signs of exposure, depends on dose and route of exposure:
 - Inhalation
 - Rapid onset: seconds to minutes
 - Additional signs: Metallic taste; burning sensation in GI / respiratory tract
 - Ingestion
 - Delayed onset: 15 to 30 minutes
 - Additional signs: Sore throat; burning sensation in GI / respiratory tract; diarrhea
 - Skin contact
 - Delayed onset: 15 to 30 minutes
 - Additional signs: Erythema, pain at site of contact
Diagnosis

Diagnosis is primarily made by index of suspicion and clinical judgement

- **Case history**
 - suspicion of exposure
- **Clinical presentation**
 - metabolic acidosis, multisystem involvement
 - odor of bitter almonds
- **Laboratory diagnosis**
 - blood cyanide levels can be drawn, but empiric treatment is almost always required before lab results are available
 - high anion gap metabolic acidosis
 - arterial and venous pO2 may be elevated
Treatment

• Treatment protocol differs between United States and other industrialized nations
• Within the United States, new consensus is developing regarding best practices
• Treatment regimen depends on severity of symptoms, route of exposure (to some extent), and what is available
Treatment: overview

1) Activated charcoal
2) Supplemental oxygen
3) Supportive care / ACLS
4) Sodium nitrite
5) Amyl nitrite
6) Sodium thiosulfate
7) Hydroxocobalamin
Treatment

1) Activated charcoal
 - For alert, asymptomatic patients following ingestion

2) Supplemental oxygen
 - 100% for suspected exposure

3) Supportive care / ACLS
Treatment

4) Sodium nitrite
-Mechanism: forms methemoglobin, competes with cytochrome oxidase for free cyanide; combines with cyanide to form cyanmethemoglobin
-Dose: Adults: 300mg IV over 5 minutes; slower if hypotension develops
Children: 0.12 to 0.33 mg/kg IV infused as above
-Adverse reactions: Hypotension associated with rapid infusion, tachycardia, syncope, cyanosis due to methemoglobin formation, headache, dizziness, nausea, vomiting. Frequency of events is not clearly defined

5) Amyl nitrite
-An inhaled drug, similar to sodium nitrite but with little systemic distribution: second line agent used when sodium nitrite is not available
Treatment

6) Sodium thiosulfate

-Mechanism: sulfur donor promotes rhodanase activity: detoxifies cyanide as it is released from cyanmethemoglobin. Directly detoxifies cyanide by conversion to thiocyanate; too slow to be useful as a first-line intervention

-Dose: Adults: 12.5g IV over 10-20 minutes following administration of sodium nitrite

Children: 412.5mg per kg IV over 10-20 minutes

-Adverse reactions: Hypotension, CNS depression and coma due to thiocyanate intoxication, psychosis, confusion, weakness, tinnitus, contact dermatitis. Frequency of events is not clearly defined
Treatment

7) Hydroxocobalamin

- **Mechanism:** direct binding agent, chelates cyanide
- **Dose:** 4 to 5 g IV
- **Adverse reactions:** minimal toxicity

Additional information:
- not the drug of choice in the United States, in part due to its high cost; more common in Europe
- other chelating agents, such as dicobalt edetate, are not generally used in the United States due to toxicity
- not yet approved by FDA

Treatment

• Typical cyanide treatment kit in the United States is stocked with:
 – Amyl nitrite ampules
 – Sodium nitrite solution
 – Sodium thiosulfate solution

• Speed is critical for survival
Clinical outcomes

• Without treatment:
 – Lethal exposure levels will result in rapid death

• With supportive treatment and specific antidotes:
 – Lethal exposure levels can be survived with immediate medical management
Decontamination

• Gas:
 – exposure does not require decontamination or contact precaution

• Liquid or solid:
 – treatment team is at risk for contact exposure or inhalation of gas produced by significant quantities of remaining cyanide compounds
 – skin decontamination can be achieved using a rinse with dilute detergent
 – contaminated clothing should be removed, preferentially by the patient if alert and asymptomatic, and placed in sealed bags
Differential Diagnosis

• Causes of anion gap metabolic acidosis:
 – “CATMUDPILES”
 • CO, CN
 • Alcoholic ketoacidosis
 • Toluene
 • Methanol
 • Uremia
 • DKA
 • Paraldehyde
 • Iron, INH
 • Lactic acidosis
 • Ethylene glycol
 • Salicylates
Public health response

• Reporting
 – Critical for enabling surveillance: used to establish baselines that are used for comparison when analyzing a potential terrorist event
 – Reporting is the first step in coping with a covert chemical event
 – County or state Department of Health
Summary

• Cyanide intoxication diagnosis and treatment has current bearing on clinical practice
 – terrorism
 – industrial accident
• The hallmark of cyanide is asphyxiation and metabolic acidosis without cyanosis
• Effective treatment is available
• Both baseline and outbreak reporting are critical
Resources

• Anne Arundel County physician link

• Essential Reading

• Additional Reading
Resources

• Web Resources
 – Centers for Disease Control and Prevention, Emergency Preparedness and Response www.bt.cdc.gov/agent/cyanide
 – CBWInfo Factsheets on Chemical and Biological Warfare Agents, Hydrogen Cyanide http://www.cbwinfo.com/Chemical/Blood/AC.shtml